Looks Can Be Deceiving: Advanced Semen Testing Can Predict Male Factor Infertility

Looks Can Be Deceiving: Advanced Semen Testing Can Predict Male Factor Infertility


Many of our new male fertility patients are perplexed about their inability to conceive. They have been told that it is not a female factor and that their semen quality is excellent. Their sperm have perfectly shaped oval heads, normal-sized mid-pieces, and straight, well-aligned tails, and they demonstrate great motility (i.e., sperm movement) and forward progression. On visual inspection, one would assume that their sperm could fertilize an egg with ease producing a normal embryo that would develop into a beautiful baby.

Unfortunately, in spite of their good looks, their sperm may never be baby-makers. The integrity of sperm DNA might be impaired. Even if sperm is able to fertilize an egg, DNA fragmentation will most likely prevent the normal development of an embryo, resulting in a failed pregnancy or miscarriage. I last wrote about sperm DNA fragmentation six years ago. New assays have been developed, and the literature updated.

It’s a growing concern amongst fertility specialists that sperm DNA fragmentation might be the cause of many couples’ inability to achieve a pregnancy naturally or through an assisted reproductive technology protocol using intrauterine insemination (IUI) or in-vitro fertilization (IVF) with or without the use of intracytoplasmic sperm injection (ICSI). I have added sperm DNA fragmentation testing to the battery of tests we perform to evaluate a man’s fertility potential. It can detect a reason for the couple’s subfertility and offer additional treatment options. We routinely screen our male patients with advanced male age, large varicoceles presence, or a history of miscarriages. 

We now also screen the male partner of infertile couples with a normal semen analysis and no obvious female factors for DNA fragmentation. In doing this, we have found greater than 40% of these men have abnormal levels of fragmentation. For these patients, this has answered questions they had and has offered them a better understanding of why certain options might be better for them in their quest towards parenthood. I will discuss some of the biology and therapeutic options in this blog. We have provided links for those wanting additional information.

DNA is an organic molecule that consists of two strands of repeating building blocks called nucleotides. Each nucleotide consists of a sugar, a phosphate group, and a nitrogen base. The nucleotides in each strand are tightly bonded. The two strands however, are loosely held together by weaker bonds. DNA fragmentation occurs when separations and breaks occur in these bonds. Our chromosomes are composed primarily of DNA, and segments of that DNA form genes, whose specific sequence of nitrogen bases constitutes genetic code. DNA fragmentation can impair the transmission of this genetic code, disrupting the cell’s ability to function. For a sperm cell, DNA fragmentation can prevent fertilization or proper development of an embryo if fertilization occurs.


Scientists have identified several factors that contribute to an increase in sperm DNA fragmentation. Oxidative stress is a major cause of DNA damage. Oxidative stress is the damage caused by free radicals reacting with molecules like DNA and thus disrupting their bonds. Physical and environmental changes can increase the level of free radicals to which sperm DNA is exposed. Recent studies have linked environmental toxins in certain chemical air pollutants, pesticides, and plastics to elevated oxidative stress and sperm DNA fragmentation. Obesity, alcohol consumption, and tobacco have also been associated with DNA damage from increased oxidative stress. 

Scrotal varicoceles have been shown to exacerbate sperm DNA fragmentation. Varicoceles elevate the temperature inside the testes to levels that disrupt the bonds of DNA molecules, resulting in fragmentation. Excess fat around the scrotum from being overweight will also elevate testicular temperatures to unfavorable levels that damage the DNA bonds.

Chemotherapy and radiation therapy have been linked to sperm DNA fragmentation, and further investigation is needed to determine if this is a long-term or even permanent side-effect of some cancer treatments. Reproductive aged men who have been diagnosed with cancer should be encouraged to cryopreserve sperm prior to starting treatment as a means of preserving their fertility. Post-treatment fertility evaluations should include an assessment of sperm DNA fragmentation, especially since men with normal semen analyses can have high levels of sperm DNA fragmentation.

Anomalies in the process of sperm maturation can cause sperm DNA fragmentation. The structure of the human sperm cell makes it more susceptible to DNA fragmentation than any other cell in the body. Its nucleus has 40% less space compared to most other cells, so sperm DNA has to be highly compacted and coiled to enable it to fit in the nucleus. This highly compacted and structured arrangement protects the sperm cell’s genetic material (DNA) as it travels through the male and female reproductive tracts, and it enables the proper fusion of DNA from both sperm and egg at fertilization. Sperm maturation is a process that transforms a round germ cell into an elongated mature sperm cell with a head, acrosome, midpiece, and a tail. During this process, DNA is uncoiled, transcribed (which is the process of reading the DNA’s genetic code), and recoiled a couple of times. Intentional nicks and breaks are made in sperm DNA to enable it to be tightly compacted and recoiled. These nicks are supposed to be repaired when the DNA is being transcribed, but external factors, such as oxidative stress and advanced paternal age, often prevent this and hence result in sperm DNA fragmentation.

Sertoli cells which function to support and nourish developing sperm cells in the testes also screen sperm cells and mark defective ones for elimination. Sometimes external factors disrupt this process, and marked sperm cells are not eliminated, or apoptosis (cell death) is initiated but not completed. These sperm cells have a much higher incidence of DNA fragmentation.

Sperm DNA fragmentation can occur during the movement of sperm from the seminiferous tubules through the vas deferens, an event that allows immature and mature sperm to be tightly packed together. Immature sperm produce a high level of reactive oxygen species (a type of free radical), which often react with and damage the DNA of mature sperm. Reactive oxygen species also activate enzymes called caspases and endonucleases that are part of the process of apoptosis, further damaging sperm DNA. This is the primary reason that sperm retrieved from the testes has less DNA damage than sperm from the ejaculate.  

Men with high levels of DNA fragmentation now have options. For many men, simple lifestyle changes can improve sperm DNA fragmentation. Weight loss, healthy diet, cessation of smoking, reduced consumption of alcohol, and antioxidants have all been shown to improve DNA integrity. For older men, who typically experience DNA damage because the mechanisms of sperm maturation function less efficiently, and men who have undergone treatment for cancer, it may not be possible to reduce sperm DNA damage. However, testis sperm have less sperm with fragmented DNA. Therefore, sperm can be surgically retrieved from the testis and used in IVF/ICSI. For additional information on sperm DNA fragmentation testing please contact me at bgilbert@nycryo.com.


 Ribas-Maynou, J., García-Peiró, A., Fernández-Encinas, A., Abad, C., Amengual, M., Prada, E., Navarro, J., Benet, J. (2013). Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay Andrology 1(5), 715 722. https://dx.doi.org/10.1111/j.2047-2927.2013.00111.x

 Smit, M., Romijn, J., Wildhagen, M., Veldhoven, J., Weber, R., Dohle, G. (2013). Decreased Sperm DNA Fragmentation After Surgical Varicocelectomy is Associated With Increased Pregnancy Rate Journal of Urology 189(1S), S146-50. https://dx.doi.org/10.1016/j.juro.2012.11.024

 Tirado, E., Barrett, B., Leader, B. (2012). Concurrent sperm DNA fragmentation and oxidative stress assessment on 2,281 male semen samples Fertility and Sterility https://dx.doi.org/10.2164/jandrol.110.010595/full

 Bungum, M. (2012). Sperm DNA integrity assessment: a new tool in diagnosis and treatment of fertility. Obstetrics and gynecology international 2012(4), 531042 6. https://dx.doi.org/10.1155/2012/531042

 Moskovtsev, S., Mullen, J., Lecker, I., Jarvi, K., White, J., Roberts, M., Lo, K. (2010). Frequency and severity of sperm DNA damage in patients with confirmed cases of male infertility of different aetiologies Reproductive BioMedicine Online 20(6), 759 763. https://dx.doi.org/10.1016/j.rbmo.2010.03.002



Bruce Gilbert

I am a Urologist/Andrologist practicing in Great Neck, New York for the past 30 years. I am also the Medical and Laboratory Director of New York Cryo, an andrology laboratory and long-term reproductive tissue bank on Long Island. Please send ideas and comments to me at bgilbert@nycryo.com

You may also like

%d bloggers like this: